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Abstract-A generalized anisotropic porous medium approach is developed for modelling the flow. heat 
and mass transport processes during binary mixture solidification. Transient predictions are obtained 

using FEM, coupled with an implicit time-marching scheme, for solidification inside a two-dimensional 
rectangular enclosure. A parametric study focusing attention on the effects of solutal buoyancy and thermal 

buoyancy is presented. It is observed that three parameters. namely the thermal Rayleigh number (Ru,,). 
the solutal Rayleigh number (Ru,) and the relative density change parameter (u?). significantly alter the 

Row fields in the liquid and the mushy regions. Depending upon the nature of these flow fields, the solute 
enrichment caused by macrosegregation may occur on the top or the bottom region of the enclosure. 

INTRODUCTION 

MACROSEGREGATION is an important phenomenon 

that is known to occur during the solidification of a 
mixture. Indeed, it is primarily responsible for the 
concentration variation of the dissolved component 
in the solidified material. For metal alloys, the mech- 
anical properties such as strength are profoundly 
influenced by this phenomenon. In the past, several 
authors have made attempts to develop simplified 
models for alloy solidification by neglecting the 
diffusion and advection of solute and assuming that 
a homogeneous material undergoes a phase-change 
within a given range of temperatures [l-5]. In these 
works, the mushy zone has been modelled as a porous 
medium and a suitable Darcy source term is added 

to the momentum equation so as to gradually extin- 
guish the velocities as the liquid solidifies. Though 
this model can explain several important physical 
phenomena for dilute alloys, it fails to predict macro- 
segregation which is commonly observed if the alloy 
is not very dilute. 

The early studies to analyse the process of solute 
transport [6-91 are based on simplistic models. In 
these studies, macrosegregation was considered to be 
unidirectional. Hence, while tendencies for both posi- 
tive and negative segregation have been predicted, 
these methods do not have a general applicability. In 
recent years, many comprehensive models have been 
developed which are capable of predicting macro- 
segregation in the most general cases [IO-161. The 

)I Author to whom all correspondence should be addressed. 

models are primarily based on the continuum mixture 
theory or on the local volume-averaging method.The 
mixture theory views the mushy zone as an over- 
lapping continuum, which is occupied by the solid 
and the liquid simultaneously. On the other hand, in 
the volume-averaging approach, the mushy zone is 
conceived to consist of two interpenetrating phases ; 
the classical conservation equations are applied only 

within each phase but not over the entire mixture. 
The details of these approaches can be found in refs. 
[13.15,17]. 

Although the phenomenon of macrosegregation of 
a solute has been studied by many authors in recent 
years, the relative roles played by the thermal buoy- 
ancy (due to the temperature gradient) and the solutal 
buoyancy (due to the concentration gradient) upon 
macrosegregation have not been highlighted so far. In 
the present study, the solidification of a binary mix- 
ture inside a two-dimensional rectangular geometry 
has been analysed, with a particular view to ident- 
ifying the nature of the flow processes and the associ- 
ated mass transfer due to macrosegregation. 

MATHEMATICAL FORMULATION 

The solidification process of the binary alloy system 
can be described in terms of the flow, heat transfer 
and solutal transport in the solid, mushy and liquid 
zones. In addition, appropriate models are necessary 
for representing the property variation in the mush 
and also for determining the volume fraction of liquid 
(or porosity) as a function of the concentration and 
temperature. It is also important to determine the 
permeability values based upon the morphology of 
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NOMENCLATURE 

c specific heat s, JJ, X, Y Cartesian coordinates 
D coefficient of diffusion of solute (dimensional and non-dimensional). 
J’, F mass fraction of solute (dimensional and 

non-dimensional) Greek symbols 
9 acceleration due to gravity 
II specific enthalpy 

thermal diffusivity 

11; latent heat of phase-change at T = 0 
;s solutal expansion coefficient 

11, latent heat of phase-change at T, 
PT thermal expansion coefficient 

k thermal conductivity 
Y angle made by the local gradient of 

h equilibrium partition ratio 
temperature with the x-axis 

I: 
K permeability tensor 

porosity (volume fraction of liquid) 
0 

K,, K? components of K in principal 
non-dimensional temperature 

directions 
I’ viscosity 
Y 

L width of the cavity 
kinematic viscosity 

Le Lewis number 
P density 
~l....>UY non-dimensional variables 

m, M morphology parameter (dimensional and 
non-dimensional) 

defined by equation (19) 
T non-dimensional time 

Pr Prandtl number A7 
p, P dynamic pressure (dimensional and non- 

non-dimensional time-step. 

dimensional) 
R non-dimensional porous medium Subscripts 

resistivity tensor defined by equation C cold wall 

(6) e eutectic 

R,,, R,,., R,.,, R,,. components of R in the h hot wall 

global Cartesian coordinate system i initial condition 

Ra, solutal Rayleigh number I liquid or liquidus 

Ra,, thermal Rayleigh number 0, ref reference values 

Ste Stefan number S solid or solidus. 

t time 
T temperature Superscripts 

T, fusion temperature for f  = 0 * non-dimensional normalized value 
U, u, II, V components of superficial velocity a solute. 

(dimensional and non-dimensional) 

the dendrite structure and finally relate them to the X-momentum 
local porosity values. The governing equations have to 
be solved in a transient manner, starting from known 
initial conditions. 

f  g@) +ug(g +“gq 

The generalized governing equations for the solid, 
mushy and liquid regions pertaining to binary alloy 
solidification are given by the expressions described 

= -;g+“,[j”;{g@)} 

below [5, 141. In these expressions, the porosity and 
the velocity values are equal to zero in the solid region, 

+;{:;(%u)}] 
- ; (R,c,u+ R,.v). (2) 

while the porosity varies from zero to one in the mushy 
zone and becomes unity in the liquid region. Also, the Y-momentum 
permeability at each point in the mushy zone has been 
treated as a second order tensor due to anisotropy. 
Other porous medium properties such as equivalent 

f~(%v)+u~~u)+u;(~~) 

thermal conductivity and solute diffusivity have been 
taken as isotropic, for the sake of simplicity. The 
governing equations are : 

Continuity 

- - +&+d”=o. a P 
0 at pI ax ay 
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Species 

where .r, .f; are the solute (a) mass fractions of the 
mixture and the liquid, respectively. While deriving 
the species transport equation (5). it has been assumed 
that the solute diffusivity in solid phase, 0: = 0. In 
equations (2) and (3) R,,, R,,., R,., and R,.,. are the 
components of a tensor R, which is given by 

R = mK- ’ (6) 

where K is the anisotropic permeability tensor and nz 
a morphology constant. The principal values of the 
permeability tensor, in turn, can be approximately 
estimated through the expressions [S, 181 

Assuming that the primary dendrite growth occurs 
along the direction of the local temperature gradient 
in the mushy zone, the following relations can be 
derived for the components of R : 

R,, = m 
K, +K, 
d 

K, -Kz 
2K, Kz 

-pcos2y 
2K,Kz 

(84 

4,. = m 
K, +Kz K, -K, 
2K,K2 + L cos 27 

2K, K2 
@b) 

K,-K2 
R.,. = R,\, = -mp 

2K, K? 
sm 2y (8~) 

where 

One of the key aspects of the equivalent porous 
medium formulation for the mushy zone is the choice 
of appropriate representation for the variation of 
properties. For instance, the viscosity appearing in the 
momentum equations is usually chosen as the liquid 
viscosity. The density p, thermal conductivity k, 
specific heat c, enthalpy h and mass fraction of solute 
S are mixture properties which are evaluated through 

the lever rule applied between the solid and the liquid 
phases, yielding 

P = EPI+(J -GPs 

k = ck,+(l -E)k, 

EPICI + (1 - Eb, c, 
c= 

P 

Pa) 

(9b) 

(9c) 

,, = EPA + (1 - E)P, k 

P 
(94 

and 

f”= EP,.I;D. + (1 - GPX 
(9e) 

P 

where 

11, = c, T m 

II, = c, T+ /I, m 

/I,” = (c,-c,)Tc+hI. Ph) 

In the present work, it is assumed that k,, k,, c,, c, and 
ps are constants, while p, varies with temperature 
as well as the solute concentration. Invoking the 
Boussinesq approximation, this variation of p, is 
accounted for only in the thermal buoyancy and the 
solutal buoyancy terms of the y-momentum equation. 
The application of the lever rule to the mixture con- 
centration in the above form (equation (9e)) implies 
local equilibrium and infinite rate of diffusion ofsolute 
within each phase [ 14.161 over microscopic volumes 
at every location in the mushy zone. It is to be borne 
in mind, however, that the volume fraction of liquid, 
E, in the above expressions is yet to be determined. An 
important assumption which has been put forward in 
this regard is that of a fixed partition ratio between the 
liquid and solid phases for the solute concentration, in 
the whole range of temperature for which sol- 
idification occurs. This can be represented as 

kp=$. 
I 

(10) 

Taking the variation of both I: and I: with tem- 
perature as linear, it can be shown that the liquid 
fraction E is given by 

&{I-&(I+$$)}. (11) 

The solute fraction in the liquid and the solid phase 
can, in turn, be determined from the following 
expressions : 

Tn, - T 
Jp=-.tT 

Tm-Tc 
WW 

E:p= $+k,. (12b) 

It is evident from the above expressions that the solute 
concentrations in the liquid and solid phases cannot 
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be treated as independent variables in the mushy zone. 
Thus, the solute transport equation in the mushy zone 
can be rewritten in terms of temperature as 

Energy 
pure phuses : 

while, for pure phases, equation (5) can be used to 
predict the rate of solute transport. Also, in the .r- 
momentum equation for the mushy zone, f:  in the 
solute-buoyancy term can be expressed in terms of 
temperature. With these assumptions, the non-dimen- 
sional equations are given by : 

Continuify 

dl7, au dV ar+~+~y=o. 

X-tnotnentutn 

Species 
pure phases : 

mush: 

(1W 

where 

x=” “2, 
-M(R,,U+R,yV). (15) L’ all 

Y-momentum 
pure phases : 

+Ra,PrO+Ra,PrF (16a) 

mush : 

+(l-a,)RaU PrB+a,. (16b) 

p-~L’ o=T-T,, J-G v,L’ 

hd ’ T,,-T,’ fZ -.ft ’ M=z 0 

ko k*=2’ PI 
c(o=-, v, = - , 

PICI ” PI 

Ra 
” 

= .qL’Pd-h - TJ , - Ra = gL’B,lf, -f;‘) 
b 

a0vi aovl 

P BX CT, =-) I72 = 
PI PATm-Tel’ 

(PA -P&T+ PIMP c, T+ h; 
(Ts = 

p,c,(T,,-TJ ’ 66 = c,(T,,-T,)’ 

& 
Le=$, Da= 

(Th -TM 
a,=G’ 

CT,-TmWT--f;“)’ 

During computations, it was assumed that p, = ps, 
c,=cS and k,=k,. Thus, a,=uq=k*=l.O and 
ug = hJc,(T,, - T,) = Ste (Stefan number). Of the 
many non-dimensional parameters which arise in the 
problem, the parameters whose variation forms the 
focus of the present investigation are RQ, RaFand a2. 
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de dF _ o 
av=x- 
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ax 
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FIG. I Problem geometry and numerical grid 

While Ra,, and Ra, represent the contributions of the 
thermal buoyancy and the solutal buoyancy. respec- 
tively, g2 signifies the relative change in density due 
to concentration and temperature variations in the 
mushy zone. The values of other parameters used 
during the computations are: k, = 0.25. Le = 10, 
M = 106, Pr = 0.1. Ste = 0.5, o3 = 0, CT, = - I, 
0, = 0.5, 0, = - 1.5, F, = I .O, 0, = - 1 and 0, = 0. 

The boundary and initial conditions prescribed for 
the problem are shown in Fig. I. The governing equa- 
tions have been solved numerically by the finite 
element method coupled with an implicit time- 
marching procedure. A IO x IO non-uniform grid with 
eight-noded rectangular elements has been used, as 
shown in Fig. I. Galerkin’s weighted residual 
approach has been employed for deriving the matrix 
equations from the differential equations. The details 
of the numerical scheme and the tests for the grid- 
sensitivity of the results are discussed elsewhere [4]. 
The CPU time taken for a typical run was of the order 
of 3 min per time-step on a network of HP-9000 series 
computers. Typically, a non-dimensional time-step 
value of Ar = 0.001 was used in computations. 

COMPARISON WITH EXISTING RESULTS 

In spite of the wide attention that the solidification 
problems have received to date, there are no ready 
data available on the solidification rates of alloy 
materials which are suitable for comparison with 
numerical predictions. For this reason, it has not been 
possible to validate the numerical predictions against 
experimental data or analytical solutions pertaining 
to alloy solidification. However, a check on the 
accuracy of the predictions can be made by recovering, 

as a limiting case, results corresponding to pure 
material solidification, for which extensive data exists 
in literature. 

A comparison of present predictions with the exper- 
imental and theoretical results of Beckermann and 
Viskanta [I91 is shown in Fig. 2, for the melting of 
gallium. In order to simulate the pure metal phase- 
change, the difference between the dimensionless 
liquidus and solidus temperatures was prescribed to 
be very small (0, - 0, = 0.01) for obtaining the results 
of the present analysis. It is observed that the shapes 
of the liquid-solid interface at steady-state predicted 
by our analysis agree well with those obtained by 
Beckermann and Viskanta [I91 for different con- 

:xpt. # i 

Ref. IS) I’ 
. 

L 0 
/ 
I’ 

40 !  

--- Prediction 1 
(this work) 1 

FIG. 2. Comparison of mean interface positions at steady- 
state with earlier results. 
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I I 
I T’ = 0.032 

--- Solidus 
----- Liquidus 

(a) 

T =0.004 

0.02 
0.04 
0.07 

/ 0.00 
/ -0.3 

/’ 
/ / 

(cl 

lr=O.O4E 
-.- Solidus 
-----Liquiaus 

0.05 
L 

0.10 
(d) 

FIG. 3. Progress of solidification for Ra, = Ru, = 105, 6: = 2. (a) and (b) isotherms; (c) and (d) iso- 
concentration lines. 

ditions. The small deviations existing between the 
results may be attributed to the fact that the densities 
and specific heats of the two phases have been taken 
to be equal in the present work, while Beckermann 
and Viskanta have considered slightly different prop- 
erty values for each phase. 

DISCUSSION 

In the present study, the transient variation of tem- 
perature, concentration and velocity fields have been 
obtained for various ranges of parameters. The import- 
ant effects which have been highlighted are the influ- 

!/-- - 

---- Liquidus 
Scale 1 - 1.0 unit 

(alo+= (b)u,=75 

FIG. 4. Influence of solute density variation upon velocity fields : lighter solute (u2 > 0) ; Rae = Ra, = 105, 
7 = 0.016. 
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FIG. 5. Influence of solute density variation upon concentration profiles: lighter solute (u2 > 0): 
Ru,, = Ru, = IO’, T  = 0.008. 

(a)ua=-I 

---- Liquidus 

Scale 1 -10 unit 
(b)u2=-75 

FIG. 6. Influence of solute density variation upon velocity fields: heavier solute (CT? < 0); Rul, = IO’, 
Ru,: = (-)106, T  = 0.016. 

(a) (b) 

crz =-75 

FIG. 7. Influence ofsolute density variation upon concentration profiles : heavier solute (uz < 0); Ru, = IO’, 
Ra,= (-)106, T = 0.016. 
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7 =0.004 
0.02 
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Ra, = IO6 

0.07 
/ 0.00 
/ -0.2 
/ 
/ 

(cl 

T = 0.016 

Ra, = IO5 
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(dl 

FIG. 8. Effect of solutal Rayleigh number upon concentration profiles; flu,, = IOJ, u2 = 2. 

ence of solutal/thermal Raylcigh numbers upon the 
flow field and macrosegregation, and also the role 
played by the ratio of density variation due to tem- 
perature and concentration differentials. 

Progress qf’solidqiculion 

In Figs. 3(a) and (b). the isotherms have been plot- 
ted at two time levels. The relative positions of the 
liquidus (E = I) and the solidus (E = 0) are shown for 
the sake of reference. It is seen that the isotherms are 
curved more in the bottom region towards the hot 
wall. This clearly indicates the effect of the convective 
circulation which has anti-clockwise sense for the set 
of parameters used in the figure. Although both the 
thermal and solutal Rayleigh numbers are equal, the 
dimensionless concentration is uniform initially and 
varies mildly across the liquid region as time proceeds, 
due to macrosegregation. Indeed, such a mild vari- 
ation leads to only a minor influence of solutal buoy- 
ancy upon the flow field. Thus, the convective cir- 
culation as well as the shapes of the isotherms are 
governed only by thermal buoyancy effects. More dis- 
cussion on the flow field patterns is presented later. 
Another interesting feature which is observed from 
the figures is that the mushy region increases in size 
with time, due to the increasing difference between the 

liquidus and solidus temperatures. This trend is also 
a consequence of the liquid becoming richer in solute 
as compared to the solid. 

The iso-concentration lines for the solute are 
plotted in Figs. 3(c) and (d) at two different times. 
Since the dimensionless initial concentration is taken 
to be zero, negative values of concentration imply de- 
pletion, while positive values correspond to enrich- 
ment. For small times, the iso-concentration lines are 
not very curved even in the liquid region, although 
the enrichment and depletion of the solute across the 
mushy zone is apparent. For later times, the iso-con- 
centration lines in the liquid region become highly 
distorted. It is interesting to note that enrichment 
occurs at the bottom while depletion in liquid occurs 
at the top. Although a positive value of cr2 implies 
that the solute is lighter than the liquid, the strong 
thermally driven flow confines the enriched fluid to 
the bottom region near the solidification front. The 
depleted zone in liquid at the top of the cavity is 
believed to be.a consequence of remelting of solid 
when it comes in contact with circulating hot fluid. 

Infiuence of solute density vuriation 
The parameter c2 gives the ratio of liquid density 

variation due to change in solutal concentration and 
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---- Liquidus 
Scale:-I.0 unit 

(a) ‘c=o.o04 

‘I - 
:I! . 
I 

.jt . 

I 

j\ . 
.I\ _ 
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(c)-c =0.004 

----Liquidus 
Scale: - lOunit 

(d)z=0.016 

FIG. 9. Vtlocity fields for (a) ahd (b) predo’minant thermal buoyancy, Ra,) = IO’. Ra, = IO’, c2 = 2; and 
(c) and (d) predominant solutal buoyancy. Ra,) = IO’, Ra, = 106. oz = 2. 

that due to temperature change. A large positive value enrichment at the bottom and depletion at the top 
of c2 would occur if the solute is very much lighter occurs for ‘T? = 2, the trend is exactly reversed for 
than the solvent. On the other hand, a large negative g1 = 75. These trends are obviously determined by 
value of (TV pertains to the situation when the solute the fact that the thermally driven flow is predominant 
is much heavier. The effects of r~? upon the flow field in the former situation, while solutal buoyancy effects 
and the concentration profiles are discussed below. gain strength near the mushy zone in the latter case. 

In Figs. 4(a) and (b), the velocity fields are shown 
for uZ = 2 and 75. Although the flow field in the liquid 
region is largely unaffected by u2, the flow within and 
adjacent to the mushy zone is significantly altered, 
with the emergence of a circulation pattern which is 
counter to the thermally driven field for a large posi- 
tive value of 02. The shape of the liquidus is also 
modified when the parameter G? is increased. These 
features can be explained from the facts that the solute 
is lighter compared to the solvent in the present case 
and a strong solutal buoyancy which opposes the 
thermally driven flow occurs for ran = 75 in the vicinity 
of the mushy region due to macrosegregation. In Figs. 
5(a) and (b), the concentration profiles for the two 
values of a2 are plotted for the same time level. While 

For negative values of cr2, the thermal and the solu- 
tal buoyancy effects are in the same direction in and 

around the mushy zone (see Figs. 6 and 7). The only 
difference between small or large negative values of 
CT~ is that the flow velocities are large in magnitude 
inside the mushy zone also, for the latter case as com- 
pared to the former. An additional feature which is 
observed for g2 = - 1 is the presence of a small clock- 
wise vortex at the top portion. This can be attributed 
to the depletion of solute which is observed in Fig. 
7(a). Except for this small depleted region, the iso- 
concentration lines are more or less similar in both the 
cases. The presence of such solute depleted/enriched 
liquid zones has been observed by other investigators 
as well [ 14, 161 at high Rayleigh numbers. 
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.!?jiicr q/ solural Ravleiyh nutnber 
The iso-concentration lines for different solutal 

Rayleigh numbers are shown in Figs. 8(a)-(d). It is 
observed that the advancement of the iso-con- 
centration lines is faster in the bottom region at 
Ra, = IO while it is equal at bottom and top for 
Ra,= IO’, and slower at the bottom region for 
Ra, = lOh. In all these cases, the thermal Rayleigh 
number has been maintained constant at 10J. These 
features reflect the nature of the flow field, which 
changes from anti-clockwise sense of circulation to a 
clockwise circulation, as Ra, is increased from 10“ to 
IO”. For Ra, = lOh and large times, enrichment and 
depletion of solute occurs at the top and bottom 
regions, respectively, as is dictated by the sense of 
circulation. 

The flow fields for two different values of Ra,: are 
shown in Figs. 9(a)-(d). It is evident from these figures 
that the sense of circulation changes when Ra, is 
increased from 10” to IO”. An interesting point to note 
is that for small times, the initiation of circulation 
occurs close to the solidifying region in all the cases 
presented. While the trend for larger Ra, values can 
be easily explained in terms of macrosegregation 
across the mushy region, the observation requires 
some detailed explanation for Ra, = 104. In the pre- 
sent study, the initial temperature of fluid is taken to 
be the same as that of the hot wall and, at time r = Of, 
the temperature of 0 = - I is imposed at .Y = 0. The 
cooling of fluid which results from this sudden im- 
position of boundary condition at .Y = 0 results in a 
downward flow being generated adjacent to the sol- 
idifying region. Elsewhere within the cavity, the vel- 
ocity values are negligibly small for small times. An 
examination of the magnitude of velocity vectors 
indicates that flow is vigorous in the anti-clockwise 
sense for Ra,= IO”, and in the clockwise sense for 
Ra, = IO”. In the former case, it is thermally driven 
flow, while in the latter, it is driven by solutal 
buoyancy. In all the above figures, the flow is very 
weak within the mushy zone due to the small value of 
oz considered herein. For Ra, = 106, a minor vortex 
with a sense of circulation opposite to that of the main 
vortex is observed in the bottom region. Obviously, 
this is a consequence of solute depletion in this region. 

CONCLUSIONS 

A parametric study highlighting the relative roles 
of solutal buoyancy and thermal buoyancy during 
binary mixture solidification has been presented. The 
flow field characteristics in the liquid as well as 
the mushy regions and their effects upon macro- 
segregation are discussed in detail. It is observed that 
the relative density change parameter rr2 affects the 
flow pattern in the vicinity of the mushy region. For 
large positive values of u2, a flow whose sense of 
circulation is opposite to that of the main liquid vortex 
occurs within the mushy zone, while for negative 
values of u2. the liquid region and mushy zone have 
the same sense of circulation. For positive cr2 and a 

large solutal Rayleigh number, even the main liquid 
vortex has an opposite sense of rotation as compared 
to the thermally-driven case. These changes in flow 
pattern profoundly influence the region of solute 
enrichment by macrosegregation. 

REFERENCES 

I. V. R. Voller and C. Prakash. A fixed grid numerical 
modelling methodology for convection-diffusion mushy 
region phase change problems, brr. J. Heu/ Mass Trans- 

/iii-30, 170991719 (1987). 
2. S. Chellaiah and R. Viskanta, Freezing of water-satu- 

rated porous media in the presence of natural con- 
vection : experiments and analysis, ASMEJ. Heat Trutu- 
fir 111, 425432 (1989). 

3. W. Shyy and M. H. Chen. Study-State natural con- 
vection with phase-change, In/. J. Hear Muss Trumfce, 
33,2545-2563 (1990). 

4. S. K. Sinha and T. Sundararajan, Analysis of alloy sol- 
idification inside arbitrary-shaped two-dimensional 
enclosures, Inr. J. Heu/ Muss Truns/kr (in press). 

5. 

6. 

7. 

8. 

9. 

10. 

II. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

I9 

S. K. Sinha, T. Sundararajan and V: K. Garg, A variable 
property analysis of alloy solidification using the aniso- 
tropic porous medium approach, Inr. .I. Heu/ Muss 
Trunsfir 35, 2865-2878 (1992). 
M. C. Flemings and G. E. Nereo, Macrosegregation: 
Part 1, Truns. TMS-AIME 239, 1449-1461 (1967). 
R. Mehrabian, M. Keane and M. C. Flemings, Inter- 
dendritic fluid flow and macrosegregation ; influence of 
gravity, MeruN. Truns. lB, 3228-3241 (1970). 
S. Kou, D. R. Poirier and M. C. Fleming% Macro- 
segregation in electroslag remelted ingots, Proc. Elecrr. 
Furn. CotK. Iron Sleel Sot. AIME 35. 221-228 (1977). 
S. D. Ridder, S. Kou and R. Mehrabian. Effect‘of’ fluid 
flow on macrosegregation in axi-symmetric ingots, 
Metull. Truns. lZB, 43S4l7 (1981). 
R. N. Hills, D. E. Loper and P. H. Roberts, A thermo- 
dynamically consistent model or a mushy zone, Q. J. 
Mech. Appl. Math. 36, 505 (1983). 
V. C. Prantil and P. R. Dawson, Application ofa mixture 
theory to continuous casting. In Trunsporr Phenomena 
in Mureriuls Processing (Edited by M. M. Chen, J. 
Majumdar and C. L. Tucker). pp. 47-54. ASME, New 
York (1983). 
C. Beckermann, Melting and solidification of binary 
mixtures with double-diffusive convection in the melt. 
Ph.D. Thesis, Purdue University, West Lafayette (1987). 
W. D. Bennon and F. P. Incropera, A continuum model 
for momentum, heat and species transport in binary 
solid-liquid phase change systems-I. Model formu- 
lation, inl. J.-Heu/ Mus.s?r&fer 30,2161-2170 (1987). 
V. R. Voller. A. D. Brent and C. Prakash, The modellina 
of heat, mass and solute transport in solidification 
systems, In!. J. Heal Muss TrunSfer 32, 1719-1731 
(1989). 
S. Ganesan and D. R. Poirier, Conservation of mass and 
momentum for the flow of interdendritic liquid during 
solidification. MefuN. Trans. 21B. 173-181 (1990). 
G. Amberg, ‘Computation of macrosegregation in an 
iron<arbon cast, In!. J. Hear Mass Trunsfer 34, 217- 
227 (1991). 
R. Viskanta and C. Beckermann, Mathematical model- 
ling of solidification. In Mulfidisciplinary Issues in 
Materials Processing and Manufacturing (Edited by 
S. K. Samanta et al.), pp. 501-526. ASME, New York 
(1987). 
D. R. Poirier, Permeability for flow of interdendritic 
liquid in columnar-dendritic alloys, Melull. Truns. MB, 
245-255 (1987). 
C. Beckermann and R. Viskanta, Effect of solid sub- 
cooling on natural convection melting of a pure metal, 
ASME J. Heal Transjer 111,41&424 (1989). 


